
PIL (Portable Imaging Library) API

A Programmers interface to the PIL Image Manipulation Engine
Revision No:
1.0.8
Revised:
 30 April, 2013
BitBank Software, Inc.
15791 Bear Creek Parkway, #B521
Redmond, WA 98052
Copyright (c) 2000-2013 BitBank Software, Inc. All rights Reserved

Table of Contents

4

The PIL Image Manipulation Library

Functions
4

Features
4

Library Object Forms
5

Compiling and Linking
5

Reentrancy
Error! Bookmark not defined.

The PIL_PAGE Structure
6

The PIL_VIEW Structure
12

PIL Api Calls
14

PILOpen() - Open a file and read image info (type, page count)
15

PILClose() - Close an open file
16

PILCreate() - Create a new, empty image file
17

PILRead() - Read a page from a file
19

PILWrite() - Write a page to a file
20

PILConvert() - Convert from one data type to another
21

PILFree() - Free a page
22

PILResize() - Resize an uncompressed image
23

PILCrop() - Crop an uncompressed image
24

PILDraw() - Render a view of an uncompressed image
25

PILTest() - Test if a file is a supported image type
27

PILAnimate() - Animate a GIF file
28

PILRotateJPEG() - Losslessly rotate a JPEG file
29

PILModify() - Change the bit depth of an uncompressed image
30

Appendix A - MICRO_VIEW.C sample file
31

Appendix B - PIL.H include file
32

The PIL Image Manipulation Library

The PIL imaging library performs a number of bitmap image functions. These include file loading and saving of various file formats, compression and decompression, bit depth conversion, and rendering scaled views. PIL is written in portable C and ARM assembly language.
Functions

The PIL libraries have the following function entry points

PILOpen

Open a file and gather initial info

PILClose

Close an open file

PILCreate

Create a new file

PILRead

Read a page from a file

PILWrite

Write a page to a file

PILConvert

Convert one compression type to another
PILFree

Free a page’s data

PILResize

Scale an uncompressed image

PILCrop

Crop an uncompressed image

PILDraw

Render a view of a page

PILTest

Quickly determine if a file is a valid image

PILAnimateGIF
Animate a GIF file (advance to the next frame)
PILRotateJPEG
Non-destructive rotate a lossy JPEG image

PILModify

Change the bit depth of an uncompressed image

PILRenderDICOM
Render a DICOM image at a given Level/Window

PILReadMeta

Read metadata from an image file

PILWriteMeta
Write a specific tag to the metadata to an image file

PILDeleteMeta
Delete a specific tag from the metadata

PILDespeckle
Remove speckles from a bitonal image

PILThreshold
Dynamically threshold an image to 1 bit per pixel
Features

File Formats. When loading any of many popular image file formats, the PIL library automatically detects the file format and number of pages. When a file has multiple pages, each page of the file can be loaded individually. With PIL it’s easy to load a file in one format and save it in another.

Image Format Conversion. The fundamental job of the PIL library is to work with compressed image data in memory or read from files. PIL has been optimized to use as little memory and time as possible; this makes it ideally suited for mobile platforms. PIL utilizes a proprietary internal format for working with bilevel images which uses very little memory and is significantly faster than competing products.
Image Manipulation. The PIL library provides a number of image manipulation facilities through the PILModify and PILDraw functions. The PILModify function can rotate, flip and do bit depth conversions. The PILDraw function supports GUI image bitblt and zoom requirements as well the ability to quickly format any area of the image for direct user access to the pixels.

Library Object Forms

The functions exist as linkable object files with the following names. All forms use the same interface definition and prototype file PIL.H. You will need to compile and link with the correct version of the following files.

PIL.H

header file for all versions

PIL.LIB

Static link library (Win, WinCE)

PIL.DLL

Dynamic link library (Win, WinCE)

PIL.SO

Linux/Android static link library
Compiling and Linking

The PIL library has been optimized for both x86 and ARM CPUs, but can be compiled for any target platform. Microsoft’s Visual Studio 2008 was used to create PIL for WinCE and Win32 targets.
Multi-threaded Use
PIL does not use any static variables and therefore is threadsafe and reentrant.
PIL_FILE Data Structure
The PIL_FILE structure contains state information about the currently open file.

typedef struct _pilfile {

int iSize;

// Size of the PIL_FILE structure

long lUser;

// user defined

int iFile;

// file handle

int iFileSize;

// size of source file

unsigned char *pData;

// pointer to memory mapped file

int *pPageList;

// list of page offsets (e.g. for TIFF performance)

int *pSoundList;

// list of sound chunk offsets (video and audio)

int *pPageLens;

// Length of each page

int *pSoundLens;

// Length of each sound chunk

char *pKeyFlags;

// flags indicating key frames of video

JPEGDATA *pJPEG;
// Precalc'd tables for JPEG & video files

int iPage, iPageTotal;

// current page and total pages

int iSoundTotal;

// number of sound chunks

int iSampleFreq;

// sound sample frequency

int iSoundLen;

// total size of sound data

int iADPCMBlock;

// block size of ADPCM data

int iFrameRate;

// Video frame rate

int iFrameDelay;

// Delay in ms per frame (animated GIF)

int iX, iY;

// Page size (video)

int iThumbCX, iThumbCY;
// thumbnail size (if present)

char cSoundBits;

// for video

char cBpp;

// Bits per pixel (if single page)
char cCompression;

// (if single page)
char cAudioCodec;

// for video

char cAudioChannels;

// for video

char cFileType;

// file type

char cState;

// current state of this file

} PIL_FILE;

PIL_FILE->iSize – size of the PIL_FILE structure

Used for verifying the correct version of the library.

PIL_FILE->pData

Points to the file data when the file is memory mapped.

PIL_FILE->pPageList

An array of integers containing the offsets of the start of each page in a multi-page file.

PIL_FILE->pSoundList

An array of integers containing the offsets of the start of each sound block in a QuickTime or AVI video file.

PIL_FILE->pPageLens

An array of integers containing the length (in bytes) of each page of a multi-page file.

PIL_FILE->pSoundLens

An array of integers containing the length (in bytes) of each sound block of a QT or AVI video file.

PIL_FILE->pKeyFlags
An array of bytes containing a flag indicating that a frame (page) is a key frame. A non-zero indicates that a frame is a key frame. This is used internally by PIL for playback of AVI movies.
PIL_FILE->pJPEG
Points to a structure containing information for decoding JPEG images.
PIL_FILE->iPage, iPageTotal

The current page and the total number of pages in the file. For video files, this contains the total number of frames.

PIL_FILE->iSoundTotal

The total number of sound blocks in a video file. Each block is not necessarily the number of sound samples needed for a single frame.

PIL_FILE->iSampleFreq

The audio sample frequency for a video file. This value is usually a multiple of 11025 (e.g. 11.025Khz, 22.05Khz, 44.1Khz).

PIL_FILE->iSoundLen
Total size of sound samples in bytes. This is the sum of the sizes of each sound block.
PIL_FILE->iADPCMBlock
ADPCM audio data is usually packed into blocks of various sizes (typically 64 bytes). This value specifies the block size in bytes.
PIL_FILE->iFrameRate

An integer specifying the video frame rate in frames per second (fractional values are rounded up).

PIL_FILE->iX, iY

The size of a frame of video in pixels. The reason this information is needed in the PIL_FILE structure is to allow pre-allocation of the memory needed to hold a single frame of video.

PIL_FILE->cSoundBits

An integer specifying the audio sample size in bits. This is not necessarily the same as the decoded audio sample size. E.g. for ADPCM audio, the sample size is 4-bits, but the decoded sample size is 16-bits.

PIL_FILE->cBpp

The video pixel bit depth. Note: not all video codecs produce 24 bits per pixel.

PIL_FILE->cCompression

The enumerated video codec. The following values are supported:

PIL_COMP_UNKNOWN,

PIL_COMP_NONE,
// uncompressed (flat bitmap)

PIL_COMP_G31D,
// CCITT Group 3 1-D

PIL_COMP_G32D,
// CCITT Group 3 2-D

PIL_COMP_G4,
// CCITT Group 4

PIL_COMP_MMR,
// IBM's variation of G4

PIL_COMP_PCX,
// Paintshop PCX (run length)

PIL_COMP_TIFFPACKBITS,
// TIFF 4.0 Packbits (modified run length)

PIL_COMP_TIFFHUFFMAN,
// TIFF 4.0 Huffman (modified G3 1-D)

PIL_COMP_LZW,
// Unisys LZW

PIL_COMP_GIF,
// Unisys LZW with small differences

PIL_COMP_JPEG,
// JPEG baseline (DCT)

PIL_COMP_RLE,
// BitBank proprietary run-length encoding

PIL_COMP_PCL,
// HP PCL

PIL_COMP_WINRLE,
// Windows BMP RLE

PIL_COMP_FLC,
// Aegis animator format

PIL_COMP_AVMFAX,
// Packetized Modified Huffman data for AVM faxes
PIL_COMP_PNG
// a PNG file
PIL_COMP_FLATE,
// TIFF & PDF zlib flate compression

PIL_COMP_IPHONE_FLATE, // Apple's hacked PNG format

PIL_COMP_MJPEG,
// Motion JPEG

PIL_COMP_MJPEG_AB, // Motion JPEG A/B (interlaced)

PIL_COMP_CINEPAK,
// Cinepak video compression

PIL_COMP_H263,
// H263 video conferencing codec
PIL_COMP_H264,
// H264 video conferencing codec
PIL_COMP_MPEG,
// MPEG video
PIL_COMP_MPEG4,
// MPEG4
PIL_COMP_MSVC,
// Microsoft Video-1
PIL_COMP_DICOMRLE, // DICOM run length

PIL_FILE->cAudioCodec

The video file audio codec. The following values are supported:

PIL_AUDIO_PCM
- uncompressed PCM data

PIL_AUDIO_ADPCM
- compressed PCM data

PIL_AUDIO_ULAW
- Mu-law condensed data (typically 16->8 bits)

PIL_AUDIO_ALAW
- A-Law condensed data (typically 16->8 bits)

PIL_FILE->cFileType

Function

The cFileType member specifies the type of image file from a list of enumerated types.

Values

	File Type

	Supported

Compression Types

	Multi-

Page
	File

Read
	File

Write

	PIL_FILE_WINBMP
	PIL_COMP_NONE
	no
	yes
	yes

	PIL_FILE_WINBMP
	PIL_COMP_WINRLE
	no
	yes
	no

	PIL_FILE_OS2BMP
	PIL_COMP_NONE
	no
	yes
	yes

	PIL_FILE_WINB2P
	PIL_COMP_NONE
	no
	yes
	yes

	PIL_FILE_PCX
	PIL_COMP_PCX
	no
	yes
	yes

	PIL_FILE_DCX
	PIL_COMP_PCX
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_G31D
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_G32D
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_G4
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_MMR
	yes
	yes
	no

	PIL_FILE_TIFF
	PIL_COMP_TIFFPACKBITS
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_TIFFHUFFMAN
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_FLATE
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_JPEG
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_LZW
	yes
	yes
	yes

	PIL_FILE_TIFF
	PIL_COMP_NONE
	yes
	yes
	yes

	PIL_FILE_JFIF
	PIL_COMP_JPEG
	no
	yes
	yes

	PIL_FILE_IOCA
	PIL_COMP_G4
	yes
	yes
	yes

	PIL_FILE_IOCA
	PIL_COMP_MMR
	yes
	yes
	no

	PIL_FILE_AWD
	PIL_COMP_G4
	yes
	yes
	no

	PIL_FILE_TARGA
	PIL_COMP_NONE
	no
	yes
	Yes

	PIL_FILE_PDF
	PIL_COMP_NONE
	yes
	yes
	no

	PIL_FILE_PDF
	PIL_COMP_G4
	yes
	yes
	no

	PIL_FILE_PDF
	PIL_COMP_LZW
	yes
	yes
	no

	PIL_FILE_PDF
	PIL_COMP_FLATE
	yes
	yes
	no

	PIL_FILE_PDF
	PIL_COMP_JPEG
	yes
	yes
	no

	PIL_FILE_GIF
	PIL_COMP_GIF
	yes
	yes
	Yes

	PIL_FILE_PSEG
	PIL_COMP_NONE
	yes
	yes
	no

	PIL_FILE_WINFAX
	PIL_COMP_G31D
	yes
	yes
	no

	PIL_FILE_BITFAX
	PIL_COMP_G31D
	yes
	yes
	no

	PIL_FILE_CALS
	PIL_COMP_G4
	no
	yes
	yes

	PIL_FILE_QL2FAX
	PIL_COMP_G31D
	no
	yes
	no

	PIL_FILE_PPV
	PIL_COMP_GIF
	yes
	yes
	no

	PIL_FILE_FLC
	PIL_COMP_NONE
	yes
	yes
	no

	PIL_FILE_AVI
	PIL_COMP_MJPEG
	yes
	yes
	no

	PIL_FILE_AVI
	PIL_COMP_CINEPAK
	yes
	yes
	no

	PIL_FILE_AVI
	PIL_COMP_H263
	yes
	yes
	no

	PIL_FILE_QT
	PIL_COMP_MJPEG
	yes
	yes
	no

	PIL_FILE_QT
	PIL_COMP_CINEPAK
	yes
	yes
	no

	PIL_FILE_QT
	PIL_COMP_H263
	yes
	yes
	no

	PIL_FILE_WF10
	PIL_COMP_G31D
	yes
	yes
	no

	PIL_FILE_AVMFAX
	PIL_COMP_G31D
	yes
	yes
	no

	PIL_FILE_CANONRAW
	PIL_COMP_JPEG
	no
	yes
	no

	PIL_FILE_MINOLTARAW
	PIL_COMP_JPEG
	No
	yes
	no

	PIL_FILE_OLYMPUSRAW
	PIL_COMP_JPEG
	no
	yes
	no

	PIL_FILE_FUJIRAW
	PIL_COMP_JPEG
	no
	yes
	no

	PIL_FILE_DICOM
	PIL_COMP_JPEG
	yes
	yes
	no

	PIL_FILE_DICOM
	PIL_COMP_DICOMRLE
	yes
	yes
	no

	PIL_FILE_DICOM
	PIL_COMP_NONE
	yes
	yes
	no

	PIL_FILE_C4
	PIL_COMP_G4
	no
	yes
	no

	PIL_FILE_PPM
	PIL_COMP_NONE
	no
	yes
	no

PIL_FILE->cState

The state of the current file. The following values are supported:

PIL_FILE_STATE_CLOSED

The file is closed and all resources are freed

PIL_FILE_STATE_LOADED

The file is open as a memory mapped pointer
PIL_FILE_STATE_OPEN

The file is open for reading/writing

PIL_PAGE Data Structure

The PIL_PAGE structure is a container of multi-format bitmaps. Its organization is given below. A PIL_PAGE is typically a statically allocated structure and its contents are dynamically managed by PIL

typedef struct _pilpage {
int iSize;

// size of the PIL_PAGE structure
int iWidth, iHeight;
// page size in pixels

unsigned char *pData;

// pointer to image data

int iPitch;

// Bytes-per-row
int iOffset;

// offset to start of image data
int iXres, iYres;

// Resolution in dots per inch

int iDataSize;

// Size of the data in bytes
int iX, iY;

// offsets to handle GIF properly
int iCX, iCY;

// GIF page size
int iFrameDelay;

// display delay in hundredths of seconds and EXIF subIFD offset
int iRepeatCount;

// GIF repeat count
long lUser;
// user defined

int iHandle;

// open file handle for read access

int iFilePos;

// current file read position (next read would start here)
int iTransparent;

// GIF transparent color index
int iPageWidth, iPageHeight;
// GIF page size & JPEG EXIF true size

unsigned char *pPalette;

// Global color palette for 1, 4 & 8 bpp images
unsigned char *pLocalPalette;
// GIF local color table
// Strip info

int iStripCount; // Number of strips in the page

long *plStrips; // Pointer to strip offsets

long *plStripSize; // Pointer to strip size info

JPEGDATA *pJPEG; // used for motion-jpeg - need to keep this structure around

int iRowCount; // Rows per strip

unsigned long ulIOThreadID; // for multithreaded operations
int iDataAvailable; // pre-loaded data for multithreaded operations
int iFileSize;

// file size

int iHighWater;

// high water mark for reading blocks of data

int hEvent;

// event handle for thread synchronization

// Exif info

int iShutter; // shutter speed

int iMetering; // metering mode
int iFStop; // F stop

int iExposure; // exposure compensation

int iExposureProgram; // aperture priority, full auto, etc.
int iISO; // ISO equivalent
int iFocalLength;
int iOriginalWidth;

int iOriginalHeight;

int iFlash;
// flash status bits

int iWhiteBalance;

int iOrientation; // EXIF orientation: 1 = normal, 8 = 90 deg right, 3 = 180 deg, 6 = 270 deg
int iAltitude;

// GPS altitude in Meters
MPEGDATA *pMPEG;

char szDateTime[32];
// ASCII date and time

char szComment[128];
// Comment

char szInfo1[128];
// Text info 1

char szInfo2[128];
// Text info 2

char szLatitude[16];
// GPS latitude

char szLongitude[16];
// GPS longitude

char szMake[128];
// camera make

char szModel[128];
// camera model
char cCompression;
// Compression type

char cPhotometric;
// photometric interpretation for 1bpp images
char cBitsperpixel;
// Supported values = {1,4,8,16,24}

char cPlanes;

// needed to properly support PCX images

char cFlags;

// includes alignment, top/bottom, etc.

char cBitDir;

// bit direction

char cState;

// current state of this page

char cSpecial;

// special flag indicating if it is a video or has an audio note

unsigned char cGIFBits;
// GIF packed fields

unsigned char cBackground;
// GIF background color

} PIL_PAGE;
PIL_PAGE->iSize – size of the PIL_PAGE structure

Used for verifying the correct version of the library.

PIL_PAGE->cCompression - Image Buffer Compression Type

Function

The " cCompression" field of a PIL_PAGE contains an enumerated integer which designates the specific format of the data pointed to by PIL_PAGE->pData.

Values

PIL_COMP_UNKNOWN

0
// undefined
PIL_COMP_NONE

1
// uncompressed (flat bitmap)

PIL_COMP_G31D

2
// CCITT Group 3 1-D

PIL_COMP_G32D

3
// CCITT Group 3 2-D

PIL_COMP_G4

4
// CCITT Group 4

PIL_COMP_MMR

5
// IBM's variation of G4

PIL_COMP_PCX

6
// Paintshop PCX (run length)

PIL_COMP_TIFFPACKBITS

7
// TIFF 4.0 Packbits (modified run length)

PIL_COMP_TIFFHUFFMAN

8
// TIFF 4.0 Huffman (modified G3 1-D)

PIL_COMP_LZW

9
// Unisys LZW

PIL_COMP_GIF

10
// Unisys LZW with small differences

PIL_COMP_JPEG

11
// JPEG baseline (DCT)

PIL_COMP_RLE

12
// BitBank proprietary run-length encoding

PIL_COMP_PCL

13
// HP PCL

PIL_COMP_WINRLE

14
 // Windows BMP RLE

PIL_COMP_FLC

15
// Aegis animator format

PIL_COMP_AVMFAX

16
// proprietary fax
PIL_COMP_PNG

17
// PNG file
PIL_COMP_FLATE

18
 // TIFF + PDF zlib flate compression

PIL_COMP_IPHONE_FLATE

19
 // iPhone PNG

PIL_COMP_MJPEG

20
// Motion JPEG

PIL_COMP_MJPEG_AB
21
// Motion JPEG A/B (interlaced)
PIL_COMP_CINEPAK

22
 // Cinepak video compression

PIL_COMP_H263

23
// H263 video conferencing codec

PIL_COMP_H264

24
// H264 video conferencing codec

PIL_COMP_MPEG

25
// MPEG-1

PIL_COMP_MPEG4

26
// MPEG-4
PIL_COMP_MSVC

27
// Microsoft Video 1
PIL_COMP_DICOMRLE

28
// DICOM run length encoded
PIL_COMP_DICOMRAW

29
// DICOM uncompressed
PIL_COMP_THUNDERSCAN

30
// Thunderscan 4-bit RLE
PIL_PAGE->cBitDir - data bit direction

Function

The "cBitDir" field indicates whether the G3/G4 data in the PIL_PAGE buffer contains data where the msb or lsb is considered the first bit of each byte. This is used most often to adjust for the type of data coming out of a fax receiver.

Values

PIL_BITDIR_MSB_FIRST
Each byte is processed from its highest order bit (bit 7) to its lowest order bit (bit 0).

PIL_BITDIR_LSB_FIRST
Each byte is processed from its lowest order bit (bit 0) to its highest order bit (bit 7).

PIL_PAGE->pData - data pointer

The "pData" field is a pointer to the image data of a PIL_PAGE. This data is in the format defined by "cCompression". In the case of PIL_COMP_RLE, the "pData" points is an array of indices for each line of run length data.

.

PIL_PAGE->iDataSize - data size

An integer containing the size of the image data in the PIL_PAGE.
PIL_PAGE->iWidth, iHeight - Image width and Height

Integer values representing the width and height of the of the stored image in pixels.

PIL_PAGE->iPageWidth, iPageHeight – Original/Page Image width and Height

In the case of JPEG files, the images can be loaded at reduced resolutions and these members contain the full/original image size. In the case of animated GIF files, these variables contain the “page” size since each page of a GIF can be any size.
PIL_PAGE->iXres,iYres - X and Y axis resolution

Integer values representing the horizontal and vertical resolutions of the image in pixels per inch.

PIL_PAGE->cPhotometric - Photometric value

Function

The "cPhotometric " field contains an enumerated integer which designates whether all 1's represents white or black.

Values

PIL_PHOTOMETRIC_BLACKISZERO
The PIL_PAGE buffer contains an image in which White the white level is represented by a pixel with a value of all 1's

PIL_PHOTOMETRIC_WHITEISZERO
The PIL_PAGE buffer contains an image in which the black level is represented by a pixel with a value of all 1's

PIL_PAGE->iGIFDelay – GIF Animation delay in hundredths of seconsd
Function

The "iGIFDelay" field is valid for animated GIF files. This value contains the time delay per page in hundredths of seconds.

PIL_PAGE->cGIFBits – packed bit field from GIF page
Function

The "cGIFBits" field of a PIL_PAGE contains the 8-bit packed bits field from the current GIF page.
PIL_PAGE->cTransparent – GIF Transparent color
Function

For GIF files with transparency, this member contains the color index of the transparent color. The fact of this color being defined doesn’t guarantee that the GIF image has any transparent pixels. This field is defined at the same time the cGIFBits member is set; if that member contains 0, then the cTransparent color is not defined.
PIL_PAGE->cBackground – GIF background color
Function

The "cBackground" member specifies the GIF background color index. GIF pages can be defined larger than the image data and this color defines the areas not covered by the image. The background color is always defined even if it is not visible (covered entirely by the image).
PIL_PAGE->cBitsperpixel - Number of bits per pixel

Function

The "cBitsperpixel" member is the number of bits required to represent each individual pixel. This is 1 for black and white, 4 or 8 for gray scale or palette color, and 16 or 24 for full RGB color. GIF images can contain any number of bits from 1 to 8. All images of non-supported bit depths (2,3,5,6,7) will be loaded at the next higher supported bit depth (4,8). 1bpp images currently are treated as black and white only (no colors can be substituted). A viewer application could potentially manage a 2-color palette outside of the PIL.
Values

1
Black and White

4
4 bit gray or 16 color palette
8
8 bit gray or 256 color palette

16
RGB565 color
24
RGB888 full color

PIL_PAGE->pPalette - Pointer to a PIL_PAGE palette array

Function

A pointer to a palette for 4 or 8 bit color only. A PIL_PAGE palette is an array of 24 bit color values which will be selected by table index bit. Each entry in the table is a single 24 bit color value in the form of a RGB triplet (3 bytes). The number of entries in a palette is 16 for 4 bitsperpixel and 256 for 8 bitsperpixel. Palette entries are ordered B…G…R at increasing addresses.
Values

NULL
Is not palette color

ptr
Is palette color

PIL_VIEW Data Structure

The PIL_VIEW data structure supplies information to the PILDraw() function. The pBitmap member points to a device independent bitmap which gets generated by the PILDraw() function. The address pBitmap[0] normally points to the upper left most pixel (the bitmap is normally drawn top down , but can be drawn bottom-up with a flag in the PILDraw function).
typedef struct _pilview {
int iSize;

// size of the PIL_VIEW structure
int iWinX, iWinY;

// offset of view in document pixels

int iScaleX, iScaleY;

// scaling factor in multiples of 1/256

int iWidth, iHeight;

// destination bitmap size

int iPitch;

// destination bytes per line

int iOrientation;

// view angle = 0,90,180,270

unsigned char *pBitmap;

// destination bitmap pointer

char cFilter;

// filtering options (e.g. scale to gray)

} PIL_VIEW;
PIL_VIEW->iSize – size of the PIL_VIEW structure

Used for verifying the correct version of the library.

PIL_VIEW->iWinx,iWiny – x,y reference in source space

A positive integer which positions the view window on the PIL_PAGE bitmap. The value of "iWinx/iWinY" is measured in pixels from the upper left corner of the PIL_PAGE image. The values of "iWinx/iWiny" will be constrained to reside on the PIL_PAGE bitmap.
PIL_VIEW->iScaleX,iScaleY - output view zoom ratio

These values determine the view compression/expansion to perform on the PIL_PAGE during PILDraw's rendering of the view to the output memory bitmap. This value, an integer, is defined as 256/scalefactor where scale factor is a positive number. For example a value of 256 means 1/1 scale, a value of 512 means 1/2 scale, etc.
PIL_VIEW->iWidth,iHeight – destination bitmap size
These values tell PILDraw the size of the output image in pixels. PILDraw uses the iWinx and iWiny position into the view source bitmap. PILDraw will then compress/expand iWidth*scalefactor pixels into an equivalent image iWidth pixels wide. The intent of this parameter is to define, in the easiest manner the width of the "real" viewing area. If not calculated correctly, the drawn image may fall short of the destination bitmap’s edges (e.g. drawing an image at ½ size into a bitmap the same size as the original). In the case that the drawn image is smaller than the destination, these values are NOT changed.
PIL_VIEW->iPitch – length of each line in bytes

This value indicates to PILDraw the length of each bitmap line in bytes. This value should always be a multiple of 4 for proper data-alignment.

PIL_VIEW->iOrientation – Angle to draw the view

This value specifies the angle to draw the current view. Valid values are 0,90,180 and 270. This function allows rotated views of an image to be drawn without modifying the original image data.

PIL_VIEW->pBitmap - pointer to memory DIB bitmap buffer

This pointer points to a user-allocated buffer which will receive the rendered view as a DIB image bitmap compatible with operating system GUI operations. PILDraw draws a portion of a PIL_PAGE bitmap and formats it into this buffer. Note that the raster lines are can be drawn in bottom-to-top or top-to-bottom order. This value must be dword-aligned or a data alignment trap may result.

To render a view you first fill in the variables of a PIL_VIEW structure then call PILDraw with a source PIL_PAGE which has previously been converted to PIL_COMP_BMP or PIL_COMP_RLC format. Be sure to calculate the memory required carefully. Each image row must be a multiple of DWORDS in size. When working with 24-bit color, always reserve at least 1 extra DWORD of space for the bitmap size to allow for unaligned pixels.
PIL_VIEW->cFilter – Drawing options

This value controls how the drawing proceeds. The following values are supported:

PIL_VIEWFLAGS_NONE
Normal drawing

PIL_VIEWFLAGS_LIGHT
1bpp images drawn light (when scaled down)

PIL_VIEWFLAGS_DARK
1bpp images drawn dark (when scaled down)

PIL_VIEWFLAGS_SCALEGRAY
 1bpp images draw as 4bpp grayscale

PIL_VIEWFLAGS_AVERAGE
16 and 24-bpp images with a scale factor > 512 use this to average the pixels together instead of simply throwing them out. This results in a much higher quality image.

PIL Api Calls

The PIL Api calls are summarized here with detailed explainations on the following pages. Examples use of all functions is demonstrated in Appendix A at the end of this manual.

PILOpen() - Open a file for reading
Function

PILOpen opens a file for reading and gathers initial info such as the file type and the number of pages.

Syntax

int PILOpen(TCHAR *filename, PIL_FILE *pFile, int iOptions, TCHAR *szCompany, ULONG ulKey);

Arguments

filename
A zero-terminated string of TCHARS (unsigned shorts only for WinCE) with a fully formed filename.

pFile
PIL_FILE structure to receive the info.

iOptions
For future use; currently undefined.
szCompany
Company name (for licensing)

ulKey
Company key (for licensing)

 Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

Discussion

PILOpen opens the specified file and reads a small amount to determine the file type (the name is not used to determine the file type). For multi-page files, a count is made of the number of pages and an array is generated specifying the offset and size of each page in the file. If a thumbnail image is present, it’s size is stored in the PIL_FILE structure as well.

See Also

PILRead, PILClose
PILRead() - Read a page from a file
Function

PILRead reads a single page from a file into a PIL_PAGE structure. Normally, the image data is read unchanged into memory, but there are a few notable exceptions. Windows and OS/2 BMP files support 15-bits per pixel, so these images are converted to 16-bits per pixel when read. Some FAX files encode data in packets and these are converted into standard CCITT G3 data when read. JFIF files are read in small chunks during decode; only the first chunk will be read by this function.

Syntax

int PILRead(PIL_FILE *pFile, PIL_PAGE *pPage, int iRequestedPage, int iOptions);

Arguments

pFile
Pointer to a PIL_FILE structure with info about an open file.

pPage
An empty PIL_PAGE structure to receive the file data.

iRequestedPage
The page to read (starting from 0)

iOptions
Option bits which can include the following values: PIL_CONVERT_THUMBNAIL. This option will read the EXIF thumbnail image from a JPEG file instead of the main image.
 Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_PAGENF

if a thumbnail is requested and not present, or a page number

PIL_ERROR_<error id>

if not successful

See Also

PILWrite, PILConvert
PILWrite() - Write a page to an open file
Function

PILWrite writes a PIL_PAGE to a file previously created with PILCreate. PILWrite currently only supports writing a single page (multi-page files cannot be created).
Syntax

int PILWrite(PIL_FILE *pFile, PIL_PAGE* pPage, int iFlags);

Arguments

pFile
A PIL_FILE previously created with PILCreate.

PIL_PAGE
A valid PIL_PAGE to add to the file. The data compression format must be compatible with the file type created (e.g. data of type PIL_COMP_BMP cannot be written to a file created as type PIL_FILE_JFIF).

iFlags
For future use; not currently defined.
Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

See Also

PILCreate, PILConvert
PILCreate() - Create a file for writing
Function

PILCreate creates a new file or opens an existing file for writing.

Syntax

int PILCreate(TCHAR *filename, PIL_FILE *pFile, int iOptions, int iFileType);

Arguments

filename
Zero terminated string if TCHARS (unsigned shorts only for WinCE) with a fully formed filename.

pFile
A pointer to PIL_FILE structure to hold the file handle information.

iOptoins
For future use.

iFileType
The file type to create. This value is placed in the PIL_FILE structure and later checked in the PILWrite() function to ensure that valid data is written to the file.

Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

See Also

PILWrite
PILConvert() - Convert Between Image Data Types

Function

PILConvert allows for image data to be converted from one compression type to another. If the source and destination image are of the same data type, then the image data is simply copied. This function essentially performs a buffer-to-buffer conversion. Image data in a PIL_PAGE structure can be generated by reading it from a file or from user code.
Syntax

int PILConvert(PIL_PAGE *pInPage, PIL_PAGE *pOutPage, int iOptions, PILPROGRESS *pProgress, void *pTables);

Arguments

pInPage
A pointer to a PIL_PAGE containing a valid image of a single page in one of several image formats

pOutPage
A pointer to an empty PIL_PAGE which will receive the data converted from "pInPage" into a format specified by the member "pOutPage->cCompression".
iOptions
The following options are supported:

PIL_CONVERT_16BPP

Decode JPEG images to 16bpp
PIL_CONVERT_ANIMATE

Retain original image buffer for animation of GIF files
PIL_CONVERT_IGNORE_ERRORS
Allow partial load of bad images (may be combined)
PIL_CONVERT_NOALLOC

Don't allocate output image buffer (for animation/video)

PIL_CONVERT_HALFSIZE

Decode JPEG as 1/2 size (really 1/4)

PIL_CONVERT_EIGHTHSIZE

Decode JPEG as 1/8 size (DC components only)

PIL_CONVERT_THUMBNAIL

Decode JPEG EXIF thumbnail or as 1/8 size if not present

PIL_CONVERT_QUALITY_HIGHEST
Encode JPEG data at the highest quality
PIL_CONVERT_QUALITY_HIGH
Encode JPEG data at high quality
PIL_CONVERT_QUALITY_MED

Encode JPEG data at medium quality
PIL_CONVERT_QUALITY_LOW
Encode JPEG data at low quality
PIL_CONVERT_QUALITY_SUBSAMPLE
Encode JPEG data with color subsampling (4:2:2) (combine with other flags)
pProgress
Pointer to progress function called multiple times during image decode. Allows image decode to be cancelled.

pTables
Internal use only – set to NULL

Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

Example

The code to read and decompress a JPEG file into a 16bpp image would look something like this:

rc = PILOpen(“c:\\test.jpg”, &pFile, 0);

if (rc == PIL_ERROR_SUCCESS)

 {

 rc = PILRead(&pFile, &pPage, 0, 0);

 if (rc == PIL_ERROR_SUCCESS)

 {

 rc = PILConvert(&pPage, &pOutPage, PIL_CONVERT_16BPP);

 PILFree(&pPage); // free compressed data

 }

 PILClose(&pFile);

 }
PILModify() - Modify Image

Function

PILModify performs horizontal flip, vertical flip, color inversion, brightness adjustment, and rotation in 90 degree increments. For bit depth changes, the options for BEST/DITHER/ERRORDIFF apply when converting from a higher bit depth to 8, 4 or 1 bpp. The “best” color choices option tries to find an optimal palette. When converting from a lower bit depth to a higher, the method is ignored.
Syntax

int PILModify(PIL_PAGE *id, int iOperation, int iParam1, int iParam2);

Arguments

PIL_PAGE
Pointer to a PIL_PAGE data structure containing the image to be modified.

iOperation
An enumerated value; the valid operations are given below:

	Operation
	Function
	Param1
	Param2

	PIL_MODIFY_GRAY
	Convert 24bpp color image to 8bpp grayscale
	N/A
	N/A

	PIL_MODIFY_ROTATE
	Rotate an image in 90 degree increments
	Angle
	N/A

	PIL_MODIFY_FLIPH
	Flip the image horizontally
	N/A
	N/A

	PIL_MODIFY_FLIPV
	Flip the image vertically
	N/A
	N/A

	PIL_MODIFY_INVERT
	Invert the colors of an image (color or b&w)
	N/A
	N/A

	PIL_MODIFY_LIGHTEN
	Lighten a 16bpp or 24bpp image by about 10%
	N/A
	N/A

	PIL_MODIFY_DARKEN
	Darken a 16bpp or 24bpp image by about 10%
	N/A
	N/A

	PIL_MODIFY_COLORS
	Modify the color content of an image
	New BPP
	Method

iParam1

First modification parameter (see table above)

iParam2

Second modification parameter (see table above)

Discussion

The color modification method can be one of the following:

PIL_COLORS_BEST

Convert colors with the best direct color substitution choices

PIL_COLORS_DITHER

Convert colors using a pattern dither

PIL_COLORS_ERRORDIFF
Convert colors using the “Bayer error diffusion” method

Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

See Also

PILRead, PILWrite, PILConvert

PILFree() - Deallocate the resources of a PIL_PAGE
Function

PILFree deallocates an existing PIL_PAGE, including any internal data associated with the PIL_PAGE (e.g. image and palette data). If loading your own PIL_PAGE structure for buffer-to-buffer operations, allocate the memory with VirtualAlloc or PILIOAlloc (same thing).
Syntax

int PILFree(PIL_PAGE *pPage);
Arguments

 PIL_PAGE
Pointer to a PIL_PAGE data structure containing image data.

Return Values

PIL_ERROR_SUCCESS

PIL_ERROR_INVPARAM
If the image had previously been freed

 PILResize() – Change the size of an uncompressed image
Function

PILResize internally calls PILDraw to resize an uncompressed image. A new image page is created from this operation (the original page is left unchanged).
Syntax

int PILResize(PIL_PAGE *pInPage, PIL_PAGE *pOutPage, int iNewX, int iNewY);

Arguments

pInPage
A pointer to a PIL_PAGE containing either PIL_COMP_NONE or PIL_COMP_RLC data.
pOutPage
A pointer to an empty PIL_PAGE structure.
iNewY, iNewY
New size of the image. The valid range is 1 to 32767 pixels.
Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

See Also

PILRead, PILConvert

PILCrop() – Crop an image to a smaller size
Function

PILCrop uses PILDraw to create a smaller image from an uncompressed image.
Syntax

int PILCrop(PIL_PAGE *pPage, PIL_VIEW *pView);

Arguments

pPage
A pointer to PIL_PAGE structure containing either PIL_COMP_NONE or PIL_COMP_RLC image data.
pView
A pointer to PIL_VIEW structure containing the size and offset of the destination image (iWinX, iWinY, iWidth, iHeight). The pBitmap pointer will be freed and a new one allocated in its place for the newly sized image. The other structure members are ignored.
Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

See Also

PILResize, PILModify
PILAnimate() – Render pages of an animated GIF or FLI/FLC file

Function

PILAnimate allows for the animation of GIF and FLI/FLC images. Both GIF and FLI/FLC animations allow each frame to contain only the area of the image which changes. PILAnimate copies this changed section onto the main image at the correct position. Palette changes can occur during the playback of a GIF animation and these are updated in the main image as needed. The destination image must be 4 or 8 bits per pixel.
Syntax

int PILAnimate(PIL_PAGE *pDest, PIL_PAGE *pSrc);

Arguments

pDest
The main animated page which will be updated. This image should have been allocated before calling this function and contain PIL_COMP_NONE data. This page should not be freed until the animation is complete.
pSrc
The new image to “animate” onto the main page. The data must be of type PIL_COMP_NONE (decompressed before calling this function). Transparency support is included. This page should be freed after it is used.
Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

See Also

PILRead, PILConvert
PILRotateJPEG() – Losslessly rotate a JPEG image 90 or 270 degrees
Function

PILRotateJPEG will losslessly rotate a JPEG image file in 90 degree increments. If the image were to be decompressed, rotated and recompressed it would result in loss of quality. This function rotates the image in a way which does not reduce the quality. This function requires a large amount of memory to operate (typically 3X the size of the original file). A new file will be generated from the rotated image and the original file will be left unchanged. If a JPEG file contains a EXIF thumbnail image, the thumbnail image will also be rotated.
Syntax

int PILRotateJPEG(TCHAR *infile, TCHAR *outfile, int iAngle);

Arguments

infile, outfile
Zero terminated string if TCHARS (unsigned shorts only for WinCE) with a fully formed filename.
iAngle
Valid angles are 90, and 270. To rotate 180 degrees, the function must be called twice.
Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

PILTest() – Test if a file is of a recognized format
Function

PILTest is a simple function for quickly determining if a file is supported by the PIL. A small portion of the file is read to look for a recognized image file header. The name of the file (e.g. *.JPG) is not relevant. A JPEG image can be named BMP and PIL will still recognize and open it correctly. This function was created to allow a list of potential files to be reduced before presentation to the user.
Syntax

BOOL PILTest(TCHAR *filename);

Arguments

filename
Zero terminated, fully formed filename.
Return Values

TRUE

The file is a recognized format that can be read by PIL

FALSE

The file is not readable by PIL
See Also

PILOpen, PILRead
PILDraw() – Render a view of an image

Function

PILDraw renders a custom view of an image into a PIL_VIEW structure. This function is basically used for implementing an image viewer which allows for zooming and panning of images onto a display.

Syntax

int PILDraw(PIL_PAGE *pPage, PIL_VIEW *pView, BOOL bTopDown, void *pGamma);

Arguments

pPage
A pointer to PIL_PAGE structure containing either PIL_COMP_NONE or PIL_COMP_RLC image data.

pView
A pointer to PIL_VIEW structure containing the size, offset and scale of the destination image (iWinX, iWinY, iScaleX, iScaleY, iWidth, iHeight). The pBitmap pointer must be allocated prior to calling this function. See the PIL_VIEW structure for more information about the structure members.
bTopDown
Flag indicating top-down (TRUE) or bottom-up (FALSE)

pGamma
Gamma adjustment table (internal use only)

Return Values

PIL_ERROR_SUCCESS

if successful

PIL_ERROR_<error id>

if not successful

PIL Imaging API Users Manual

Page 1 of 32
PIL Image Processing API

Page 4 of 32

